По какой технологии изготавливаются плоские мониторы мти. Виды мониторов


Еще не так давно на рабочих столах пользователей большое место занимали мониторы с электронно-лучевой трубкой. , а тем более смартфоны, только начали появляться на полках магазинов. Прошло не так много времени, и громоздкие ЭЛТ-мониторы начали сменять первые жидкокристаллические дисплеи, а карманы наполняли разного рода гаджеты, в которых необходимым атрибутом был экран.

Со временем экраны стали не только прибавлять в диагонали, но также менялась технология работы дисплея, и в характеристиках к устройствам мы все чаще начали замечать такие непонятные аббревиатуры как TN, TN-Film, IPS, Amoled и т.д.

Данная статья была написана для обычных потребителей, которые хотят выбрать себе монитор, смартфон или планшет. Поэтому здесь не будет множества терминов и глубокого внедрения в ту или иную технологию, а будет описана работа экранов доступным языком, понятным рядовому пользователю. Я надеюсь, данная статья прольет свет на новые технологии в области отображения информации, а также поможет людям в дальнейшем выборе устройства, которым будет приятно пользоваться.

LCD (Liquid crystal display), он же ЖКД (жидкокристаллический дисплей), построен на основе жидких кристаллов, которые меняют свое расположение при подаче на них напряжения. Если внимательно присмотреться к монитору, то можно заметить, что он состоит из маленьких точек – пикселей. Это и есть жидкие кристаллы. В свою очередь каждый пиксель состоит из красного, синего и зеленого субпикселей. При подаче напряжения субпиксели выстраиваются в определенном порядке и пропускают через себя свет, таким образом формируя пиксель определенного цвета.


Из большого количества таких пикселей и формируется изображение на экране монитора или другого устройства.

TN и TN+Film матрицы

Первые массовые мониторы оснащались матрицами TN. Это самый простой, но в то же время не самый качественный тип матрицы. Данная технология базируется на том, что при отсутствии напряжения субпиксели пропускают через себя свет, образуя на экране белую точку. При подаче напряжения на субпиксели, они выстраиваются в определенном порядке, образуя собой пиксель заданного цвета.

Из-за того, что стандартный цвет пикселя, при отсутствии напряжения, белый, данный тип матриц обладает не самой лучшей цветопередачей. Цвета отображаются более тускло и блекло, а черный цвет выглядит скорее темно-серым.


Еще одним главным недостатком TN матрицы являются малые углы обзора. Частично с данной проблемой попытались справиться улучшением технологии TN до TN+Film, с помощью дополнительного слоя, нанесенного на экран. Углы обзора стали больше, но все равно оставались далеки от идеала. В данный момент TN+Film матрицы полностью заменили TN.

Но, кроме недостатков, в таких матрицах есть и свои достоинства. К ним принадлежит малое время отклика и относительно недорогая себестоимость.

Учитывая все достоинства и недостатки, можно сказать, что если вам необходим недорогой монитор для периодического использования в работе с документами или для серфинга в интернете, то мониторы с TN+Film матрицами отлично подойдут для данных нужд.

IPS матрицы

Главным отличием от технологии IPS от TN является расположение субпикселей при отсутствии напряжения. Они располагаются перпендикулярно друг к другу, образуя черную точку. Таким образом, в состоянии спокойствия экран остается черным. Это дает преимущество в цветопередаче перед экранами с TN матрицами. Цвета на экране выглядят ярко, сочно, а черный цвет остается действительно черным. При подаче напряжения пиксели меняют свой цвет. Принимая эту особенность во внимание, владельцам смартфонов и планшетов с IPS-экранами можно посоветовать использовать темные цветовые схемы и обои на рабочем столе, тогда смартфон от аккумулятора будет работать немного дольше.

Также приятной особенностью IPS матриц являются большие углы обзора. В большинстве экранов они составляют 178°. Для мониторов, а особенно для смартфонов и планшетов эта особенность является важной при выборе пользователем девайса.

Но, естественно, присутствуют и недостатки. Главным недостатком является большее время отклика экрана. Это влияет на отображение в динамических картинках, таких как игры и фильмы. В современных IPS панелях было улучшено время отклика, так что теперь этот недостаток не является столь критичным.

Еще одной особенностью IPS-экранов является их большая стоимость по сравнению с TN. Но в последнее время цена на IPS-панели снизилась и стала доступна большинству пользователей.

Таким образом, телефоны и планшеты лучше выбирать с IPS-матрицами, и тогда от использования устройства пользователь будет получать огромное эстетическое удовольствие. Матрица для монитора не является столь критичной, но при возможности рекомендуется обратить внимание на современные IPS-мониторы.

AMOLED-экраны

В последние несколько лет смартфоны начали оснащать AMOLED-дисплеями и при этом очень рекламировать такие телефоны покупателям. Так давайте разберемся, что нам пытаются донести пиар-менеджеры компаний, а что в их словах обычный рекламный трюк.

Технология создания AMOLED-матриц основана на активных светодиодах, которые начинают светиться и отображать цвет при подаче на них напряжения. Что это нам дает? А дает нам это довольно противоречивые особенности.
Начнем с цветопередачи. Насыщенность и контрастность таких экранов зашкаливают. Цвета отображаются настолько ярко, что у некоторых пользователей могут уставать глаза при продолжительной работе со своим смартфоном. Зато черный цвет отображается еще более черным, чем даже в IPS-матрицах.


Такие яркие цвета очень влияют на энергопотребление дисплея. Так же как и в IPS, отображение черного цвета требует меньше энергии, чем отображение определенного цвета, и тем более белого. Но разница в энергопотреблении между отображением черного и белого цвета в AMOLED-экранах намного больше. Для отображения белого цвета необходимо в несколько раз больше энергии, чем для отображения черного.

Еще одной негативной особенностью является «память картинки». При продолжительном выводе статического изображения могут оставаться следы на экране, а это в свою очередь сказывается на качестве отображения информации.

Также из-за своей довольно высокой стоимости AMOLED-экраны пока используются только в смартфонах. Мониторы, построенные на такой технологии, стоят неоправданно дорого.

Заключение

В завершении статьи хотелось бы сказать, что восприятие изображения довольно субъективное для каждого пользователя. Для кого-то и TN матрицы будет вполне достаточно, а кто-то будет менять десятки мониторов, пока не найдет свой идеал. Таким образом, несмотря на все технологии создания дисплеев, выбор всегда остается за пользователем и зависит от его индивидуального восприятия картинки на экране. А как работают экраны в режиме сенсорного ввода, вы можете прочитать .

В настоящее время существует большое количество типов или видов мониторов , имеющих отличия в технологии изготовления экрана, и как следствие, качество воспроизведения изображения и применения в различных областях деятельности. Перечислим основные виды мониторов и дадим краткую характеристику:

Электронно‐лучевые мониторы. Исторически самые первые. Состоят из вакуумной электронной трубки, в которой пучки электронов, с помощью магнитной системы отклонения, формируются и управляются. Эти пучки электронов бомбардируют слой люминофора на котором проецируется изображение, возникает свечение и, в результате, возникает изображение. Поскольку данные мониторы практически вытеснены повсеместно, более детально их рассматривать не будем.

Основные недостатки данных мониторов:

⁃Большие габариты, связанные с принципиальным устройством электронно‐лучевой трубки.

⁃Большая масса, связанная с первой характеристикой.

⁃Искажения изображения на переферии монитора, связанные с физическим устройством электронно‐ лучевой трубки и принципиальной невозможностью производства плоских мониторов по этой технологии.

⁃Конструктивная необходимость использования высокого напряжения, до 50 кВольт, что влияет не лучшим образм на энергосберегающие характеристики, а также безопасность.

Жидкокристаллические мониторы или LCD по‐английски. Эффект изменения положения молекулы жидкого кристалла под действием напряжения был известен давно. Практический эффект был получен ещё в начале 60‐х годов прошлого века. Тогда впервые появились миниатюрные дисплеи в наручных часах, калькуляторах, различных индикаторах. С течением времени технология совершенствовалась, хорошим толчком послужило появление ноутбуков и других портативных компьютеров.

Применение данной технологии в производстве мониторов позволило решить полностью проблемы, которые были у их предшественников, электронно‐лучевых мониторов. Габариты значительно уменьшились, в десятки раз. Теперь нет необходимости специально выделять большое место под монитор. В связи с этим значительно уменьшился вес самого монитора. Теперь по массе он сопоставим с ноутбуком. Естественно, это касается не очень больших мониторов. Искажения, характерные для электронно‐лучевых мониторов, исчезли, поскольку экран жидкокристаллической матрицы действительно плоский.

Однако, жидкокристаллическим мониторам присущи свои недостатки, которые фирмы‐производители пытаются преодолеть, внедряя новые технологии. К таким недостаткам относятся более низкая контрастность и насыщенность цвета изображения. Время отклика матрицы(появилась новая характеристика для LCD) на первых порах была большой, это приводило к тому, что динамические сцены показывались с артефактами изображения. Связано это с инерционностью переключения состояния жидких кристаллов. Малые углы обзора, когда одна и таже картинка, если смотреть сбоку, сверху или снизу начинает искажать или инвертировать цвета.

Для преодоления этих недостатков фирмы‐производители начали совершенствовать технологию жидкокристаллических матриц, что привело к созданию следующих типов мониторов, различающихся по технологии изготовления матрицы:

⁃TN+film(Twisted Nematic или скрученные нематически), исторически первые жидкокристаллические матрицы, в которой кристаллы выстроены друг за другом, но расположены относительно плоскости дисплея или взгляда по спирали. При подаче напряжения эта спираль «скручивается» на величину, зависящую от напряжения. Пиксел окрашивается в тот или иной цвет.

⁃S‐IPS, разработка фирмы Hitachi, кристаллы закручены не в спираль, а выстроены друг за другом параллельно. Это позволяет получить более качественные цвета, но время отклика увеличивается, так как нужно больше времени на поворот всего массива кристаллов.

⁃MVA/PVA, компания Fujitsu разработала очередную технологию, устраняющую недостатки цветопередачи технологии TN и уменьшающее время отклика по сравнению с технологией S‐IPS. Для этого пришлось существенно усложнить строение и матрицы, и фильтров‐поляризатров. Фирма Samsung разработала собственную технологию PVA, чтобы не платить лицензионные сборы. Технологии эти похожи, а отличие в большей контрастности изображения.

⁃PLS, технология разработанная фирмой Samsung, позиционируется в способности дать более контрастное изображение по сравнению с технологией S‐IPS, и дешевле на 10% по сравнению с ней. Технология изготовления и устройства матрицы неизвестна. До недавнего времени данный тип матриц использовался в мобильных устройствах.

Плазменные мониторы или PDP по‐английски. Используется эффект свечения инертных газов под высоким напряжением. Данная технология избавлена от недостатков, присущих жидкокристаллическим матрицам. Яркость и контрастность картинки на высоте, и поскольку элементы матрицы получаются достаточно большими, что влияет на разрешающую способность не лучшим образом, это практически не видно. Изображение динамических сцен также передаются без искажений. Углы обзора большие, картинку видно без потери цвета с любого направления. Толщина экрана стала ещё меньше, по сравнению с жидкокристаллическими мониторами.

OLED‐мониторы или мониторы с матрицей из органических светодиодов. Являются приемниками жидкокристаллических мониторов. К преимуществам относятся чрезвычайно низкое энергопотребление, так как данные светодиоды светятся сами по себе. Нет нужды в лампе подсветки. Чрезвычайно высокая контрастность, высокое быстродействие, время отклика измеряется в микросекундах, в отличие от миллисекунд в жидкокристаллических мониторах. Глубина OLED‐монитора ещё тоньше, чем у плазменных мониторов. А углы обзора состовляют 180 градусов, так как мы смотрим на сами светодиоды, а не на фильтры, как у жидкокристаллических мониторов.

Несмотря на такие выдающиеся характеристики есть и недостатки. Это недолговечность OLED‐матрицы при дороговизне подобных мониторов является решающим фактором низкого спроса на них. А это влияет на скорость внедрения разработок, ведь фирмы несут убытки. Зачем тратить большие ресурсы на убыточное дело?

Но несмотря на это, разработчики не оставляют попытки решить указанные проблемы, так как OLED‐технология позволяет делать фантастические вещи: сворачивать экран в трубочку, создавать прозрачные табло, использовать в широком диапозоне температур и т.д. Для любителей подобных вещей продаются OLED‐мониторы, стоимостью порядка 8000$, с диагональю экрана около 60 см.

На сегодняшний день это самые распространённые виды мониторов , за исключением самого первого и последнего в нашем списке. Времена первого уже прошли, а у последнего еще всё впереди. Рассмотрим более детально технологии изготовления матриц мониторов.

Существуют всего две массовые технологии изготовления дисплеев для телефонов: экраны на основе LCD , то есть жидких кристаллов, и на основе OLED - органических люминесцентных технологий. Дисплеи на жидких кристаллах пока наиболее распространены, но развитие и внедрение более современной технологии OLED идет неимоверно быстрыми темпами! Еще есть технология E-ink — такие дисплеи теоретически могут быть использованы в мобильных телефонах и прочей «мелкой» технике, однако расходы на их производство пока что довольно велики, да и недостатки имеются.

Жидкие кристаллы LCD

Устройства с жидкокристаллическими экранами - LCD (liquid cristal display) - сегодня можно увидеть повсюду: компьютерные дисплеи (плоские панели), телевизоры, карманные компьютеры. И, разумеется, мобильники. Практически все продающиеся сегодня телефоны оснащены ЖК-экранами: монохромными (янтарными, серо-зелеными) или цветными.

Что это за кристаллы? Они, как и твердые кристаллические вещества, например, соль, обладают строго определенной структурой - кристаллической решеткой - и прозрачны для света. Но, в отличие от обычных кристаллов, жидкие могут изменять структуру под внешним воздействием (электрического тока или температуры), закручиваться, становясь при этом непрозрачными. Темные элементы на экране - это участки ЖК-покрытия, на которые подан ток. Управляя током, можно создавать на экране надписи или картинки и так же легко добиваться того, чтобы они исчезали.

Жидкие кристаллы открыл австрийский ботаник Рейницер еще в 1888 году. И лишь в 1963 году ученые обнаружили, что в нормальном состоянии такие кристаллы пропускают свет, но могут менять свою структуру и отражать или поглощать свет под воздействием электротока. Это открытие через 10 лет позволило создать первый ЖК-экран, который появился на рынке в 1973 году в калькуляторах Sharp.

С тех пор ученые создали еще несколько технологий отображения информации, в основе которых лежит использование жидких кристаллов. Заметим только, что практически все сегодняшние LCD-дисплеи можно разделить на те, где кристаллы отражают/поглощают внешний свет, и те, где кристаллы преобразуют (поляризуют) свет, который идет от встроенного в телефон источника. Последние сейчас используются повсеместно, т. к. они способны обеспечить в общем-то приемлемое качество изображения да и диапазон отображаемых оттенков цвета у них не столь уж мал.

Вам наверняка приходилось встречаться с аббревиатурой STN (super twisted nematic - структура со сверхбольшим искажением), в таких дисплеях кристаллы способны «закручиваться» особенно сильно, что обеспечивает черно-белой или цветной картинке на экране повышенную контрастность. В STN степень «закручивания» очень велика - до 140 процентов! Такие экраны стоят во многих современных телефонах.

В ЖК-дисплеях для управления может использоваться активная или пассивная матрица. Пассивная матрица образована наложением слоев горизонтальных и вертикальных контактных полос. Если подать ток на вертикальную и горизонтальную полоску, задавая координаты, как в игре «Морской бой», то там, где эти полоски скрещиваются, кристаллы изменят структуру, и в соответствующем месте экрана можно будет видеть точку. В зависимости от силы тока кристаллы поворачиваются (искажаются) в большей или меньшей степени, пропуская, соответственно, больше или меньше света. В цветных дисплеях они еще и поляризуют свет. При поляризации из белого света электролюминесцентной лампы задней подсветки в нужных пропорциях «вырезаются» те или иные цветные составляющие, что в итоге и определяет цвет точки экрана. Кстати, именно эффект поляризации света приводит к тому, что на поверхности компакт-диска можно наблюдать радужные разводы. Отметим, что одним из основных недостатков таких экранов является их низкое быстродействие - для статичных картинок это значения не имеет, но картинки динамические, например, анимированные заставки или игрушки, на таких дисплеях смотрятся неказисто. Пример пассивной матрицы - экран, установленный в аппаратах Nokia 7210/6610.

Активные матрицы

Активные матрицы - это другой способ управления жидкими кристаллами. Активные матрицы обозначают аббревиатурой TFT (Thin Film Transistors) или AM (Active Matrix). Под поверхностью экрана на их основе - слой мельчайших транзисторов, полупроводников, каждый из которых управляет одной точкой экрана. В цветном дисплее телефона их количество может достигать нескольких десятков (а то и сотен) тысяч. Такой способ управления позволяет ускорить работу дисплея в несколько раз, хотя для воспроизведения видеоролика и этот способ не слишком эффективен, изображение может быть слегка «размытым», поскольку сами кристаллы не будут успевать поворачи-ваться с нужной быстротой.

Случается, что транзистор выходит из строя. Подобный дефект легко заметить невооруженным взглядом - точка экрана постоянно светится яркой «звездой» на фоне других или не светится вообще. Поэтому при покупке мобилки не поленитесь включить ее и внимательно присмотритесь к дисплею и, если заметите «битые» элементы, вовремя поменяйте аппарат.

Своим путем идут разработчики Samsung - в прошлом году компания представила ЖК-дисплеи, выполненные по собственной технологии UFB (Ultra Fine and Bright). За этой аббревиатурой скрывается экран, обладающий повышенной яркостью и контрастностью, при этом потребляемая мощность снижена по сравнению с традиционными ЖКИ. Вдобавок производство нового дисплея, по заверению разработчиков, обходится дешевле. Интересно, что удалось пробить барьер в 65 тысяч цветов, начиная с 2003 года в серию идут уже экранчики на 260 тысяч.

Органические дисплеи OLED

Брешь в засилье ЖК-дисплеев пробила новая технология OLED (Organic Light Emitting Diodes) - электролюминесцентные дисплеи на органических светоизлучающих полупроводниках. Главное отличие - не нужны лампы подсветки, в новых дисплеях светятся непосредственно элементы поверхности. И светятся ярко, в десятки раз ярче, чем экраны на ЖК! При этом они потребляют гораздо меньше электроэнергии, обеспечивают хорошую цветопередачу, высокую контрастность, большой угол обзора (до 180 градусов), могут иметь широкий цветовой охват. Из недостатков отметим относительно низкое «время жизни» (порядка 5–8 тысяч часов), впрочем, для телефона - более чем достаточно.

По толщине органические дисплеи соизмеримы с обычным оконным стеклом, впрочем, есть даже гибкие образцы, которым прочат большое будущее в качестве, например, экранов большого формата. Их можно будет при необходимости выдвинуть из телефона, а после использования такой экран вновь скатается в рулончик внутри корпуса аппарата.

«Органикой» оснащают в основном дорогие устройства высшего класса, серийное производство которых еще не так масштабно. Однако ведущие производители дисплеев (Sanyo, Sony, Samsung, Philips и прочие) настолько активно продвигают OLED-технологию на рынок, что совсем скоро такого рода дисплеи начнут вытеснять привычные нам STN.

Как устроены органические OLED экраны?

Что такое обычные светодиоды (неорганические) читателям объяснять не нужно - их можно видеть в различной электронной технике, начиная от телевизоров и магнитофонов и заканчивая телефонами и компьютерами. Гуманитарии обычно называют зеленые или красные светодиоды (например, те, что своим миганием подсказывают, находитесь ли вы в зоне покрытия сотовой сети) «лампочками»: на самом деле, это полупроводниковые устройства, способные под действием тока излучать свет того или иного цвета.
Впервые органические люминесцентные полупроводники (диоды) были созданы в 1987 году японской компанией Kodak. В природе аналогичное по происхождению (но не по способу получения) свечение наблюдается у светлячков и глубоководных рыб. Ученые исследовали процессы их свечения и синтезировали необходимые вещества. На протяжении последних лет технологии производства органических дисплеев активно разрабатывались, совершенствовались, а в 2003 году OLED-дисплеи выплеснулись на массовый рынок.

Изобретатели люминесцентных диодов обнаружили, что если совместить два слоя определенных органических материалов и в какой-либо точке пропустить через них электрический ток, то в этом месте появится свечение. Используя разные материалы и светофильтры, можно получать разные цвета.

Существующие модели, как и в случае с ЖКИ, разделяются по типу управляющей матрицы. Есть OLED с пассивными, а есть и с активными матрицами (TFT). Принцип работы матрицы такой же, но вместо слоя жидких кристаллов используется слой органических полупроводников. TFT OLED - самые быстрые и обеспечивают просто потрясающую картинку. Такой экран не спасует и при солнечном освещении, а видеоролик на нем будет смотреться не хуже, чем на телеэкране.

E-ink дисплеи

Поговаривают, что это еще одна перспективная технология. Уже созданы рабочие черно-белые образцы, но с реализацией цветности есть проблемы. Самый простой дисплей на электронных чернилах состоит из двух слоев: белого (верхнего) и черного (специальные чернила) под белым. Под действием тока частицы нижнего слоя могут проходить в верхний (и возвращаться обратно), создавая требуемую картинку. Как обычно, ток на слои можно подавать как с помощью пассивной матрицы, так и с помощью активной TFT. По заверениям компании-разработчика, электронно-чернильные дисплеи теоретически могут иметь очень низкое энергопотребление (точные данные не сообщаются) и сохранять картинку даже при выключенном питании. Звучит заманчиво, но надо посмотреть, как же в итоге это будет выглядеть.

OLED vs LCD

Обратим внимание на достоинства и недостатки дисплеев. ЖК-дисплеи уже на пределе своих возможностей. Сама сущность работы жидких кристаллов определяет невысокую скорость смены кадров на экране и высокую потребляемую мощность, поскольку в некоторых телефонах, кроме задней подсветки экрана, есть еще и фронтальная. На цветных ЖК-экранах почти всегда тяжело что-то разглядеть при солнечном свете, они весьма хрупкие. Дисплеи с активными матрицами (LCD TFT) более яркие и контрастные, чем аналогичные дисплеи с пассивными матрицами, но активные дисплеи сложнее в производстве и, соответственно, дороже. Исключением можно признать разве что UFB-экраны.

Технология органических дисплеев лишена едва ли не всех недостатков, характерных для ЖК-дисплеев, и обеспечивает гораздо лучшие характеристики изображения. Начать хотя бы с того, что можно забыть о необходимости подсвечивать экран спереди или сзади - элементы экрана светятся сами!

Для любителей технических подробностей:

Дисплеи UFB , способные отображать 65 тысяч цветов, обладают контрастностью 100:1, яркостью 150 кд/кв. м, при этом потребляют не более 3 мВт.
Дисплей OLED , представленный Sony еще в 2002 году, обладал яркостью в 300 кд/кв. м, а показатель контрастности для OELD может достигать 300:1. Если сравнивать быстродействие, то от обычного ЖК-дисплея органика отличается тем, что способна реагировать в 100–1000 раз быстрее - это оценят владельцы видеотелефонов 3G и телефонов с видеопроигрывателями.

Категории: / от 24.04.2017

Алексей Борзенко

Для создания плоских дисплеев (Flat Panel Display, FPD) в настоящее время используют различные технологии и решения, хотя на рынке по-прежнему доминируют жидкокристаллические (ЖК) экраны. Как известно, по технологии создания современные дисплеи можно разделить на две группы. К первой группе относятся устройства, основанные на излучении (эмиссии) света, например, традиционные на базе электронно-лучевых трубок (ЭЛТ), и плазменные дисплеи (Plasma Display Panel, PDP). Во вторую группу входят устройства трансляционного типа, к которой относятся и ЖК-мониторы. Устройства обеих групп имеют собственные, вполне определенные достоинства и недостатки. Если же говорить о будущей конвергенции устройств, то перспективные решения в области создания современных дисплеев действительно часто совмещают особенности обеих технологий.

Плазменные дисплеи

На рынке больших экранов до сих пор преобладают так называемые плазменные дисплеи - PDP (рис. 1). Первые исследования и разработки в этой области относятся к началу 60-х годов. Стоит напомнить, что монохромные PDP-экраны использовались даже в некоторых переносных компьютерах. Работа плазменных мониторов очень похожа на работу неоновых ламп, сделанных в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов, между которыми зажигается электрический разряд, и возникает свечение. Аналогично, плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например, аргоном или неоном. Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом для человека. Фактически каждый пиксел на экране работает, как обычная флуоресцентная лампа.

Высокая яркость и контрастность наряду с отсутствием дрожания составляют большое преимущество таких мониторов. Кроме того, угол (по отношению к нормали), под которым можно увидеть нормальное изображение на плазменных панелях, существенно больше, чем у обычных ЖК-мониторов. Главные же недостатки PDP-устройств - довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора, и низкая разрешающая способность, обусловленная большими размерами элемента изображения.

Цветные PDP-дисплеи сегодня выпускают практически все крупные японские и южнокорейские компании, работающие в этой сфере, - LG, Mitsubishi, NEC, Panasonic, Pioneer, Samsung. Лидером в этом секторе рынка заслуженно считается корпорация Fujitsu (http://www.fujitsu.com), которая еще в 1999 г. организовала с Hitachi совместное предприятие для производства плазменных дисплеев. Для повышения качества изображения и уменьшения цены корпорация, в частности, разработала специальную технологию Alternate Lighting of Surfaces (ALiS).

Японская ассоциация по электронике и информационным технологиям - JEITA оценивает в этом году рынок PDP-устройств на уровне 4,3 млн шт. Однако все производители сегодня активно ищут замену данной технологии и, по имеющейся информации, даже Fujitsu планирует отказаться от PDP в пользу более перспективных решений.

Органические и полимерные дисплеи

Как предполагают многие аналитики, объем рынка нанотехнологий будет ежегодно расти на 40% в течение ближайших 10-15 лет, а вычислительная техника и электроника одними из первых получат реальную возможность применения нанотехнологий на практике. Так, компания NanoBillboard (http://www.nanobillboard.com) опубликовала список 10 лучших на сегодня продуктов, созданных с помощью нанотехнологий; критериями отбора были популярность на рынке, использование нанотехнологий и применение продукта в повседневной жизни. Первым номером в этом списке оказались органические светоизлучающие диодные (Organic Light Emitting Diode, OLED) дисплеи, созданные из нескольких слоев нанопленок. Отметим, что оборот от продаж OLED-устройств во всем мире за прошлый год, согласно оценкам аналитической компании iSuppli (http://www.isuppli.com), увеличился примерно на 74% по сравнению с 2003 г. и должен составить свыше 430 млн долл.

Вообще говоря, светодиоды - вещь совершенно не новая. В технике они получили широкое распространение еще в середине прошлого века, а идея создания первых устройств отображения на базе подобных диодов возникла в начале 1980-х годов, но не была реализована из-за отсутствия необходимых материалов. Ситуация изменилась с появлением органических материалов особой группы - так называемых проводящих электролюминесцентных полимеров. Основой для этих материалов служат высокомолекулярные соединения с молекулами, в которых имеются чередующиеся двойные связи. В чистом виде они не являются проводниками заряда, поскольку электроны в них локализованы за счет участия в образовании сильных химических связей. Для освобождения электронов применяются различные примеси, после добавления которых и появляется возможность перемещения зарядов (электронов и дырок) вдоль молекулярной цепи.

Таким образом, в основе технологии лежат свойства так называемых сопряженных полимеров. В их молекулах атомы углерода образуют между собой двойные (или тройные) связи, на образование которых каждый атом отдает два электрона вместо обычного одного. В результате перекрытия p-орбиталей появляются "свободные" электроны; как следствие, становится возможным протекание электрического тока вдоль молекулярных цепей. Возникают энергетические зоны валентности и проводимости, разделенные запретной зоной. Так полимеры приобретают свойства полупроводников. Эти материалы обладают всеми теми же свойствами, что и неорганические полупроводники, т. е. способны образовывать p-n-переход и - что особенно важно - при определенных условиях излучать свет. Это позволило создать комбинированные по принципу действия устройства - излучающие диоды.

В исследованиях OLED выделилось два основных направления, одно из которых заложили ученые из Eastman-Kodak, еще в 1987 г. опубликовавшие статью Organic electroluminiscent diodes, где был описан новый класс тонкопленочных устройств на базе органических материалов, обладающих электролюминесцентными свойствами, заметно превосходящими все, что было создано в этой области ранее. Впервые предложенная Kodak схема с двумя слоями органики между электродами вместо одного и сегодня остается одним из основных вариантов для создания OLED-устройств. При этом технологический процесс использует циклы вакуумного испарения (осаждения). Еще в феврале 1999 г. корпорации Sanyo Electric и Eastman-Kodak образовали альянс для разработки и продвижения на рынке OLED-дисплеев. Уже через несколько месяцев они смогли показать работающий прототип полноцветного активноматричного дисплея.

Основы другого направления - технологии Polymer LED были заложены в 1989 г., когда профессор Ричард Френд (Richard Friend) вместе с группой химиков лаборатории Кембриджского университета открыл светоизлучающие полимеры LEP (Light Emitting Polymer). Вскоре выяснилось, что открытые вещества обладают рядом свойств, которые позволяют разработать на их основе семейство дисплеев нового поколения. Для изучения LEP и создания новых дисплеев была образована компания CDT (Cambridge Display Technologies, http://www.cdtltd.co.uk). Вскоре она нашла инвесторов, и началась разработка первого дисплея, сделанного на основе LEP-, или PLED-технологии (рис. 2).

Специалисты из CDT сумели решить ряд проблем, применив, например, специальные методики производства упорядоченных полимеров, а также новые материалы. Чтобы добиться излучения света, был спроектирован аналог неорганического диода. Он состоял из двух слоев - полифениленвинилена (polyphenylene-vinylene, PPV) и циано-PPV (CN-PPV), размещенных между полупрозрачным электродом (оксиды индия и олова), нанесенным на подложку стекла, с одной стороны, и металлического контакта - с другой. Эти материалы - PPV и циано-PPV - выступают не только как полупроводники, но и как самоизолирующие полимеры. Как показали исследования, CN-PPV хорошо подходит для транспортировки электронов благодаря более низкому положению дна зоны проводимости. Электрические характеристики материалов подобраны так, чтобы электроны из CN-PPV и дырки из PPV собирались вдоль границы контакта слоев, где и происходит рекомбинация электронов и дырок с генерацией фотонов.

Базовые решения

На сегодняшний день OLED/PLED-технологиями занимаются несколько десятков компаний и университетов. Новые материалы представляют собой куда более сложные комбинации веществ по сравнению с тем, что было на заре этих технологий. Появились новые химические формулы базовых слоев, обогащающие добавки, отвечающие каждая за свою часть спектра - красную, синюю, зеленую. Ведь, как и в традиционных ЭЛТ-дисплеях, OLED-экран представляет собой матрицу, состоящую из комбинаций ячеек трех основных цветов - красного, синего и зеленого. В зависимости от того, какой цвет требуется получить, регулируется уровень напряжения на каждой из ячеек матрицы, и в результате смешения трех образующихся оттенков получается искомый цвет.

Итак, структура OLED-ячейки многослойна (рис. 3). Сверху OLED-панели располагается металлический катод, снизу - прозрачный анод. Между ними расположено несколько органических слоев, собственно и составляющих светодиод. Один слой служит источником дырок, второй - полупроводниковым каналом, третий слой транспортирует электроны и, наконец, в четвертом слое происходит замещение дырок электронами, которое в светоизлучающих полимерах сопровождается световым излучением.

Рис. 3. Базовая структура OLED.

Как и ЖК-экраны, OLED-дисплеи бывают активными и пассивными. Последний тип устроен как простейший двухмерный массив пикселов в виде пересекающихся строк и колонок. Каждое такое пересечение представляет собой OLED-диод. Чтобы заставить его излучать свет, управляющие сигналы подаются на соответствующую строку и колонку. Чем больше поданное напряжение, тем выше будет светимость пиксела. Напряжение требуется достаточно высокое, вдобавок подобная схема, как правило, не позволяет создавать большие экраны, состоящие более чем из миллиона пикселов.

Что касается активной матрицы, это все тот же двухмерный массив из пересекающихся колонок и линий, но на сей раз каждое из их пересечений представляет собой не только светоизлучающий элемент, или OLED-диод, но и управляющий им тонкопленочный транзистор. Управляющий сигнал посылается уже на него, а он, в свою очередь, "запоминает", какой уровень светимости требуется от ячейки и, пока не будет дана другая команда, исправно поддерживает этот уровень тока. И напряжение в этом случае требуется куда более низкое, и ячейка куда быстрее реагирует на изменение ситуации. Обычно здесь используются тонкопленочные полевые транзисторы - TFT (Thin Film Transistor) на базе поликристаллического кремния.

Благодаря партнерству CDT с корпорацией Seiko Epson произошло, пожалуй, важнейшее событие в истории развития пластиковых дисплеев. Японцы предложили использовать модифицированную струйную технологию для "печати" пикселов экрана прямо на управляющих схемах из TFT-транзисторов. Дело в том, что использование пассивноматричных управляющих схем в сочетании с относительно невысокой скоростью работы полимерных "диодов" приводит к неудовлетворительной инерционности экранов. А достоинства активноматричной технологии не удавалось реализовать из-за неприменимости фотолитографии к тончайшим полимерным пленкам.

Отклик индустрии

На промышленной выставке FPD International 2004, проходившей в Йокогаме (Япония), корпорация LG.Philips LCD совместно с LG Electronics впервые продемонстрировала самую большую в мире активноматричную дисплейную панель на базе органических светодиодов. Устройство с размером диагонали 20,1 дюйма, по заявлению представителей этих компаний, было создано с использованием технологии низкотемпературного поликристаллического кремния LTPS (Low Temperature Poly Silicon). При этом LG.Philips LCD разработала TFT-модули, применяемые в продукте, а LG Electronics предоставила процесс вакуумного испарения для органических субстанций. Вообще говоря, южнокорейские и японские производители дисплейных панелей уделяют большое внимание совершенствованию и маркетингу OLED-технологий, которые, в частности, превосходят плазменные и ЖК-дисплеи по качеству изображения.

В начале этого года корпорация Samsung Electronics (http://www.samsungelectronics.com) сообщила, что ею создан прототип крупнейшего в мире монитора по технологии OLED. Представленный Samsung 21-дюйм экран имеет разрешение WUXGA (Wide Ultra Extended Graphics Array) с яркостью 600 нит (кандел на кв. метр) и контрастность 5000:1, что делает его применимым для воспроизведения видео высокой четкости. В производственном процессе используется технология аморфного кремния (a-Si), который применяется в некоторых производствах ЖК-панелей, так что новые панели можно в принципе выпускать на существующих производственных линиях. Как утверждают в корпорации, вопрос коммерческого производства сейчас находится в стадии рассмотрения.

Успехи южнокорейской корпорации просто поражают, если учесть, что всерьез OLED-технологией она начала заниматься лишь в 2000 г., запустив так называемый i-Project, в приложении к мобильным телефонам с экранами размером в 1,5-2 дюйма. Впоследствии Samsung Electronics стала сотрудничать с Vitex Systems (http://www.vitexsys.com), известной в то время своей фирменной технологией Vacuum Polymer Technology (VPT). Корпорация начала реализовывать программу Barrier Engineering Program, целью которой была разработка методов защиты субстрата (подложки) от окисления кислородом, воздействия воды и прочих подобных факторов. Обычно в качестве оптимального материала используется стекло, которое хорошо многим, кроме, например, гибкости. Vitex же предлагала наносить непосредственно на OLED-матрицу слой из полимеров и керамической пленки, защищающий их не хуже стекла, но в то же время абсолютно гибкий. Сначала неравномерный рельеф OLED-экрана заливается тонким слоем жидкости-"мономера", поверхность которого, естественно, будет абсолютно ровной. Потом этот "мономер" полимеризуется, переходя в твердое состояние, а сверху на него наносится необходимое число защитных слоев полимеров и керамики. За счет того, что подложка доведена до абсолютно ровного состояния, защита получается весьма надежной, и все это при общей ее толщине не более 3 мкм, т. е. куда тоньше и легче, чем стекло. В настоящее время Vitex Systems разработала еще более совершенную технологию Barix.

Хотя в прошлом году японская корпорация Seiko Epson показывала прототип 40-дюйм OLED-экрана, в Samsung Electronics говорят, что их 21-дюйм образец превосходит представленный японцами, поскольку та панель по сути собиралась из четырех смежных 20-дюйм экранов. Более того, корпорация уже весной продемонстрировала собственную 40-дюйм OLED-панель на международной выставке-конференции Society of Information Display 2005 в Бостоне.

Кстати, в конце прошлого года Seiko Epson и Universal Display Corp. (UDC, http://www.universaldisplay.com) подписали соглашение о совместной разработке новой технологии - PHOLED (Phosphorescent OLED). По мнению разработчиков, дисплеи на ее основе могут быть в четыре раза эффективнее тех, что созданы на базе существующей OLED-технологии, и, кроме того, будут потреблять меньше энергии, рассеивать меньше тепла и станут более долговечными. UDC использует результаты американской научной школы, взяв за основу результаты исследований ученых из Принстона (Princeton) и Университета Южной Калифорнии (University of Southern California). Среди предложенных корпорацией разновидностей дисплеев есть оригинальный вариант с прозрачным экраном - TOLED (Transparent OLED), с увеличенным коэффициентом контрастности. Такие устройства могут найти применение в салонах автомобилей (монитор на ветровом стекле), шлемах и очках-мониторах. Еще одна конструкция предусматривает расположение субпикселов TOLED "бутербродом" - SOLED (Stacked OLED), что позволит создавать полноцветные мониторы высокого разрешения. И наконец, возможны "гибкие" экраны FOLED (Flexible OLED), а точнее говоря, экраны, выполненные на гибкой подложке, спектр применения которых может быть самым широким.

Преимущества и недостатки

Таким образом, есть все основания полагать, что под боком у ЖК-технологии развивается очень серьезный конкурент. Действительно, технологию OLED эксперты часто рассматривают как потенциальную замену не только ЖК-мониторов, но и плазменных панелей. Дело в том, что OLED-дисплеи имеют целый ряд существенных преимуществ. Они потребляют меньше энергии, не требуют дополнительной подсветки и при этом обеспечивают повышенную яркость, высокую контрастность и частоту регенерации изображения, видимого к тому же под большими углами обзора. Кроме того, OLED-устройства, согласно утверждениям сторонников этой технологии, имеют меньшее время отклика и поэтому лучше приспособлены для быстро меняющегося изображения.

Немаловажным фактором роста популярности OLED-дисплеев может стать также себестоимость массового производства, которая базируется на применении тонкопленочных технологий и стандартных литографических процессов. Такая комбинация может обеспечить низкие затраты и высокую надежность всего производственного процесса. Некоторые эксперты полагают, что при условии массового производства стоимость OLED-экранов будет ощутимо ниже, чем у ЖК-панелей. Немаловажен и тот факт, что такие мониторы работают при напряжении питания всего несколько вольт и имеют очень малую массу и толщину. Все это должно сделать технологию привлекательной для производителей электроники и плоскопанельных экранов. Однако до недавнего времени утверждалось, что уровень развития самой технологии не достиг пока точки возможности массового коммерческого производства. Исключения составляют уже устанавливаемые малые экраны в некоторых моделях сотовых телефонов, цифровых камер и наладонных компьютеров.

Из недостатков новой технологии стоит особо отметить относительно низкое "время жизни" (lifetime) излучающих полимеров. Самые большие проблемы возникли с материалами, излучающими синий свет. Сначала их время работы вообще не превышало 1000 ч, что было явно неприемлемо для практических применений. Но достигнутые на сегодняшний день успехи не могут не впечатлять. Хотя в синем спектре перспективные OLED-материалы по-прежнему остаются наименее долговечными, их срок жизни составляет уже около 10 тыс. ч. А осенью прошлого года CDT удалось получить OLED-материал с синим свечением, время жизни которого составило 40 тыс. ч.

Электролюминесцентные экраны

Менее интенсивно развивается производство плоских дисплеев, основанных на электролюминесцентной (ElectroLuminescent, EL) технологии. О том, что некоторые материалы (например, сульфид цинка) при прохождении тока обладают способностью излучать видимый свет, известно еще с 1937 г. Однако практическое применение для плоских дисплеев этот эффект нашел спустя почти 50 лет, когда появились тонкопленочные EL-материалы. По мнению некоторых специалистов, EL-дисплеи имеют ряд преимуществ перед ЖК- и даже FED-устройствами. Это касается как разрешающей способности, так и контрастности, угла обзора и даже энергопотребления.

Так, корпорации Casio Computer удалось значительно увеличить уровень яркости EL-дисплеев на основе аморфного кремния. Данное достижение позволит электролюминесцентным мониторам конкурировать в этом отношении с плазменными панелями. Улучшение яркости стало возможным в результате изменения структуры панели - между подложкой и светоизлучающим слоем введен еще один, дополнительный полимерный слой. Он позволяет предотвратить утечку тех электронов, которые в стандартных панелях не попадали на светоизлучающий слой, и таким образом повышает эффективность испускания света на 30%. В результате яркость увеличивается до 450 кд/м2 - втрое больше, чем у существующих панелей, использующих электролюминесцентную технологию. Экспериментальная модель панели повышенной яркости имела размер диагонали всего 2 дюйма, но Casio планирует к 2006-2007 финансовому году развернуть коммерческий выпуск модификаций таких дисплеев с диагональю от 30 до 40 дюймов.

Другую интересную технологию предлагает компания iFire Technology, уже привлекшая на свою сторону таких производителей, как Sanyo Electric и Dai Nippon Printing. Толстопленочные диэлектрические электролюминесцентные панели TDEL (Thick-film Dielectric ElectroLuminescent) дебютировали в мае прошлого года и сразу продемонстрировали неплохие характеристики. При диагонали в 34 дюйма и величине угла обзора 170° максимальная яркость изображения составила примерно 500 кд/м2, причем коэффициент контрастности был равен 500:1. Для сравнения скажем, что аналогичные параметры для обычных ЭЛТ-устройств составляют соответственно 150 и 300:1. По словам разработчиков, данная технология позволит создавать большие панели при ценах на 30-50% ниже по сравнению с другими технологиями. И не только большие - экономическая оправданность сохраняется при диагоналях как 5, так и 50 дюймов.

Напомним, что принцип действия электролюминесцентных панелей заключается в приложении электрического поля к многослойной структуре из двух электродов (полупрозрачного и алюминиевого) и слою диэлектрика, на который нанесен слой люминесцентного вещества (люминофора). Последний излучает свет под воздействием электромагнитного поля. Обычно слой люминофора состоит из какого-либо полупроводника, играющего роль генератора "разогретых" электронов, и излучающих центров с поглотителями, в роли которых выступают, например, атомы марганца, теллура или меди. Напряжение, необходимое для возбуждения люминесценции, столь велико, что пробивание тонкого слоя люминофора неизбежно. Поэтому обычно конструкция включает в себя два слоя диэлектрика, изолирующих люминофор от прямого контакта с электродами. Прибегнув к нанесению толстого слоя диэлектрика, сотрудникам iFire удалось увеличить надежность конструкции, что позволило масштабировать EL-технологию на дисплеи большого формата и повысить их яркость.

Автоэмиссионные FED- и SED-дисплеи

Большое внимание сегодня уделяется созданию дисплеев на базе автоэлектронной эмиссии (Field Emisson Display, FED). В отличие от ЖК-экранов, которые работают с отраженным светом, FED-панели сами генерируют свет, что роднит их с экранами на базе ЭЛТ и PDP-панелями, поскольку все они относятся к группе эмиссионных дисплеев (рис. 4). Однако в отличие от ЭЛТ, у которой всего три электронных пушки, в FED-устройствах для каждого пиксела предназначен свой электрод, благодаря чему толщина панели не превышает нескольких миллиметров. При этом каждый пиксел управляется напрямую, как и в ЖК-дисплеях с активной матрицей. Свою родословную FED-устройства ведут от разработок середины 1990-х гг., когда инженеры пытались создать по-настоящему плоский кинескоп.

Один из вариантов FED - так называемая технология SED (Surfaceconduction Electronemitter Display). Эту технологию трудно назвать новинкой, поскольку корпорация Canon (http://www.canon.com) начала работать над ней еще в 1986 г. Однако по ряду причин долгое время работы над SED не форсировались. В 1999 г. к проекту присоединилась корпорация Toshiba (http://www.toshiba.co.jp), добавив к ноу-хау Canon свой опыт в сфере производства ЭЛТ, в частности, технологию вакуумного напыления. Кроме того, Canon приобрела у компании Candescent Technologies (http://www.candescent.com), которая прошлым летом прекратила свое существование, все права на ее интеллектуальную собственность. Как известно, вышеупомянутая компания ускоренными темпами вела подготовку производства FED-устройств по собственной технологии - ThinCRT ("тонкая ЭЛТ"). По мнению ряда экспертов, решения, полученные Canon от Candescent Technologies, позволили значительно усовершенствовать ее собственную SED-технологию. Во многом благодаря этому альянс Canon и Toshiba смог представить на объединенной выставке перспективных технологий CEATEC 2004 (Combined Exhibition of Advanced Technologies), которая прошла в Японии в октябре прошлого года, первый прототип SED-дисплея. Диагональ экрана у этого устройства составляла 36 дюймов, а контрастность изображения - 8600:1. Одним из основных преимуществ данного устройства была не столько его толщина - 7 мм (толщина современного плазменного дисплея составляет несколько сантиметров), сколько сниженное энергопотребление: SED-дисплей потреблял всего 160 Вт, тогда как ЖК-дисплей с такой же диагональю экрана - 200 Вт, а PDP - 350 Вт. Как сообщалось, экспонат пользовался успехом, во всяком случае, к нему выстраивались длинные очереди.

Таким образом, изменения, внесенные в технологию, позволили разработчикам утверждать, что они научились делать SED-дисплеи дешевле, чем плазменные панели такого же размера. При этом новые экраны не менее плоские, чем ЖК, но свободны от всех их недостатков. Они обеспечивают столь же контрастное и насыщенное изображение, как хороший ЭЛТ-кинескоп, а энергии потребляют в полтора раза меньше.

В прошлом году Canon и Toshiba объявили о заключении соглашения о совместном производстве усовершенствованных плоскопанельных SED-дисплеев. Стоимость проекта составляет 1,82 млрд долл. Для его реализации было создано совместное предприятие SED Inc. Обе корпорации заявили, что начнут производство SED-дисплеев, в основном больших размеров (от 50 дюймов), в августе 2005 г. По их прогнозам, предприятие должно окупиться к 2010 г. Планируется произвести в этом году около 3 тыс. SED-дисплеев в месяц, в 2008 г. - 1,8 млн шт., а в 2010 г. - 3 млн шт. Более того, корпорация Toshiba планирует в текущем году полностью прекратить производство и продажу PDP-панелей (сначала операции будут свернуты в Японии, затем и в других регионах). Вместо "плазмы" корпорация сфокусируется на производстве SED-устройств. Ожидается, что в ближайшие несколько лет объемы продаж устройств отображения с экранами, диагональ которых превышает 40 дюймов, утроятся. По прогнозам исследовательской компании iSuppli (http://www.isuppli.com), с 7,2 млн шт. в прошлом году они возрастут к 2008 г. до 22 млн шт.

Принцип работы FED-дисплея

FED-дисплей представляет собой стеклянную пластину, на которой расположены электронные эмиттеры (катоды) - излучающие электроны элементы, аналогичные электронной пушке обычного вакуумного кинескопа. Параллельно ей расположена другая стеклянная пластина, на которую нанесено флуоресцирующее вещество. Между двумя пластинами создается высокое разрежение (вакуум). Кстати, одна из проблем, с которой сталкивались разработчики FED-панелей, состояла именно в том, что между двумя пластинами стекла, разделенными узкой щелью, должно создаваться разрежение (то есть должен быть откачан воздух). Но в этом случае пластины начинают притягиваться друг к другу, чего необходимо было избежать.

Эмиссия электронов из эмиттера за счет туннельного эффекта обеспечивается подачей потенциала на тонкую пленку, в которой прорезаны сверхтонкие (толщиной всего в несколько нанометров) щели. Часть "выбитых" электронов усиливается разностью потенциалов в зазоре между двумя пластинами и попадает на покрытую флуоресцирующим веществом пластину, вызывая его свечение. Каждый из катодов под воздействием разности потенциалов испускает электроны в строго определенную зону люминофора, равнозначную пикселу или субпикселу. В SED в качестве катода обычно используется пленка оксида палладия (считается, что это не только дешевый, но и стабильный материал), а анодом служит подложка на основе алюминия со слоем люминофора.

В отличие от ЭЛТ, где применяется от одного до трех "горячих" катодов, подобные дисплеи обладают сверхмалой толщиной, сравнимой с ЖК- и PDP-панелями, а также идеально плоской поверхностью экрана. Кроме того, используемый механизм формирования изображения исключил присущие ЭЛТ ограничения по площади экрана: теоретически возможны FED-дисплеи любого размера. Вместе с тем FED сохраняет положительные черты ЭЛТ, такие, как угол обзора 180°, небольшое время отклика (в пределах 2-3 мс) и естественная цветопередача, - показатели, к которым стремятся разработчики ЖК-дисплеев. В свою очередь, FED выгодно отличается от PDP существенно меньшим энергопотреблением и более высокой разрешающей способностью. При этом, по оценкам, стоимость производства FED в промышленных масштабах гораздо меньше, чем всех остальных популярных сегодня дисплеев. Еще один плюс SED-панели состоит в экономичности. По имеющейся информации, энергопотребление таких панелей почти наполовину меньше, чем у сравнимых с ними по размеру плазменных экранов. Но не обходится, конечно, и без минусов: технология массового производства таких панелей на первых порах не может быть дешевой.

Таким образом, конструкция FED-дисплея обеспечивает не только высокую яркость изображения и его качественную цветопередачу, ни в чем не уступающие вакуумным кинескопам, но и широкий угол обзора экрана, простоту и технологичность производства (отсутствует система развертки), а также возможность создания абсолютно плоских и тонких экранов.

Использование углеродных нанотрубок

Еще одна многообещающая технология создания плоских экранов - CNT-FED, которая использует углеродные нанотрубки CNT (Carbon NanoTubes). Еще с конца 90-х гг. в качестве катодов в FED-панелях начали использовать пучки углеродных нанотрубок, выращиваемых на подложке. Первым делом на стеклянную подложку наносится графитовый порошок с зернами размером 3-5 нм, а затем панель обрабатывается при определенных температуре и давлении. В течение нескольких минут зерна образуют волокна до 10-30 нм в сечении и до 100 нм в высоту, способные испускать электроны в вакуум под воздействием разности напряжений на катоде и аноде. Отрицательно заряженный катод образует решетку и излучает электроны через нанотрубки, которые как бы фокусируют их энергию (рис. 5).

Новая технология будет применяться при производстве плоскопанельных дисплеев и, по мнению ее разработчиков, позволит значительно улучшить их характеристики. Дело в том, что углеродные нанотрубки имеют ряд исключительных свойств: электропроводность, соизмеримая с электропроводностью меди или кремния; лучшая среди всех известных материалов теплопроводность; прочность, превосходящая сталь почти в 100 раз. К тому же для производства плоских экранов технология CNT-FED обладает всеми преимуществами органических дисплеев OLED: не требует задней подсветки, имеет малое время отклика, широкий угол обзора и высококачественную цветопередачу. Однако время жизни дисплеев на базе CNT-FED значительно больше.

Не секрет, что многие из перспективных направлений в материаловедении, нанотехнологиях, наноэлектронике, прикладной химии связываются в последнее время с фуллеренами, нанотрубками и другими похожими структурами, которые часто называют общим термином "углеродные каркасные структуры". Под этим понимают большие молекулы, состоящие исключительно из атомов углерода. Часто говорят о том, что углеродные каркасные структуры - это новая аллотропная форма углерода. Главная особенность этих молекул заключается в их каркасной форме. Они выглядят как замкнутые, пустые внутри "оболочки". Самая знаменитая из углеродных каркасных структур - это фуллерен C60. В конце 80-х - начале 90-х гг., после того как была разработана методика получения фуллеренов в достаточных количествах, было обнаружено множество других, как более легких, так и более тяжелых фуллеренов, начиная от C20 (минимально возможной структуры) до C70, C82, C96 и выше.

Однако разнообразие углеродных каркасных структур на этом не заканчивается. В 1991 г. были обнаружены длинные цилиндрические углеродные образования, получившие название нанотрубок (рис. 6). Необычного в этих структурах довольно много. Во-первых, разнообразие форм: нанотрубки могут быть большими и маленькими, однослойными и многослойными, прямыми и спиральными. Во-вторых, несмотря на кажущуюся хрупкость и даже ажурность, нанотрубки оказались на редкость прочным материалом как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки также ведут себя довольно интересно: они не рвутся и не ломаются, а просто перестраиваются. Кроме того, нанотрубки демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств. Например, в зависимости от конкретной схемы сворачивания графитовой плоскости нанотрубки могут быть как проводниками, так и полупроводниками.

Многие эксперты полагают, что необычные электрические свойства нанотрубок сделают их одним из основных материалов в наноэлектронике. Уже сейчас созданы опытные образцы полевых транзисторов на основе одной нанотрубки: прикладывая запирающее напряжение в несколько вольт, исследователи научились изменять проводимость однослойных нанотрубок на несколько порядков. Еще одно их применение заключается в создании полупроводниковых гетероструктур, т. е. структур типа металл-полупроводник или стык двух разных полупроводников. Теперь для изготовления такой гетероструктуры не надо будет выращивать отдельно два материала и затем "сваривать" их друг с другом. Все, что требуется, - это в процессе роста нанотрубки создать в ней некий структурный дефект. Тогда одна часть нанотрубки будет металлической, а другая - полупроводниковой.

Одним из первых коммерческих применений станет добавление нанотрубок в краски или пластмассу для придания этим материалам свойств электропроводности. Это позволяет заменить в некоторых изделиях металлические детали полимерными. Создан продукт на основе нанотрубок, по существу представляющий собой проводящий полимер. Кроме того, покрытия с примесью углеродных нанотрубок могут использоваться для отвода статического электричества или поглощения сигнала радара. В ближайшие годы нанотрубки найдут применение для изготовления оптоволокна или замены традиционных транзисторов в микросхемах.

Как говорилось выше, разработано уже и несколько применений нанотрубок в компьютерной индустрии. Так, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пиксела. Получающееся при этом зерно изображения может быть фантастически малым - порядка микрона.

Результаты лабораторных исследований панелей FED с нанотрубками оказались вполне стабильными (срок их службы достигает 20 тыс. ч) и настолько выгодными в производстве, что стоимость дисплеев с 30-дюйм экраном обещает быть на 30% ниже самого дешевого ЖК-монитора с такой же диагональю. Собственные программы разработки панелей на базе CNT-FED ведут сейчас многие организации. Стоит отметить, что технология очистки углеродных нанотрубок (отделение хороших трубок от плохих) и способ введения нанотрубок в другие продукты еще требуют совершенствования.

Carbon Nanotechnologies (http://www.cnanotech.com , CNI), одна из ведущих компаний, производящая углеродные нанотрубки для IBM и различных исследовательских институтов, планирует в ближайшее время расширить производство, что может способствовать началу коммерческого применения технологии. Так, CNI планирует довести производство одностенных углеродных нанотрубок до 45 кг в смену. Кроме того, компания осваивает полномасштабное коммерческое производство и в этом году должна выпускать примерно полтонны нанотрубок в смену. Еще два года назад CNI могла изготовить всего около 0,5-1 кг подобного материала в день, а обычно производила примерно килограмм в неделю. Заметим, что углеродные трубки - материал довольно дорогой: в настоящее время 1 г этого материала предлагается за 10 долл. Эксперты утверждают, что в ближайшие два-три года цена его упадет до 1 долл. Это весьма существенное снижение, если учесть, что буквально несколько лет назад за 1 г CNT просили около 500 долл.

В лаборатории корпорации Motorola (http://www.motorola.com) нашли способ выращивания нанотрубок при низких температурах - это важное достижение, так как основа, к которой они крепятся (стекло или транзисторы), нечувствительна к нагреванию. В лаборатории Motorola создали также способ прецизионного размещения отдельных нанотрубок на поверхности материала. Возможность размещать их непосредственно на подложке при контролируемых расстояниях, размерах и длине гарантирует высокое качество изображения при оптимальном уровне эмиссии электронов, яркости, чистоте цвета и разрешении плоских дисплеев.

Ученые из IBM Research (http://www.research.ibm.com) нашли новый способ заставить углеродные нанотрубки излучать свет, что может привести к дальнейшему совершенствованию оптоволоконной технологии. Кроме того, специалисты "Голубого гиганта" продемонстрировали новый процесс выращивания углеродных нанотрубок, которые можно внедрять в процессоры, что должно привести к созданию в ближайшие десятилетия гораздо более мощных компьютеров.

Корпорация NEC (http://www.nec.co.jp) создала технологию, которая позволяет стабильно выращивать углеродные нанотрубки и изготавливать транзисторы на их основе. Интересно, что транзисторы на нанотрубках обладают более чем в 10 раз большей крутизной характеристики, чем кремниевые МОП-транзисторы. В NEC считают, что смогут выпустить первые коммерческие микросхемы на базе углеродных нанотрубок уже к 2010 г. Компанией был разработан процесс вакуумного напыления CVD (Chemical Vapor Deposition) и найден катализатор, позволяющий выращивать нанотрубки на поверхности кристалла кремния. К тому же удалось научиться контролировать ориентацию нанотрубок.

Первый рабочий жидкокристаллический дисплей был создан Фергесоном (Fergason) в 1970 году. До этого жидкокристаллические устройства потребляли слишком много энергии, срок их службы был ограничен, а контраст изображения был удручающим. На суд общественности новый ЖК-дисплей был представлен в 1971 году и тогда он получил горячее одобрение. Жидкие кристаллы (Liquid Crystal) - это органические вещества, способные под напряжением изменять величину пропускаемого света. Жидкокристаллический монитор представляет собой две стеклянных или пластиковых пластины, между которыми находится суспензия. Кристаллы в этой суспензии расположены параллельно по отношению друг к другу, тем самым они позволяют свету проникать через панель. При подаче электрического тока расположение кристаллов изменяется, и они начинают препятствовать прохождению света. ЖК технология получила широкое распространение в компьютерах и в проекционном оборудовании.

Отметим, что первые жидкие кристаллы отличались своей нестабильностью и были мало пригодными к массовому производству. Реальное развитие ЖК технологии началось с изобретением английскими учеными стабильного жидкого кристалла - бифенила (Biphenyl). Жидкокристаллические дисплеи первого поколения можно наблюдать в калькуляторах, электронных играх и в часах.

Насладимся плоским экраном

Современные ЖК мониторы также называют плоскими панелями, активными матрицами двойного сканирования, тонкопленочными транзисторами. Идея ЖК мониторов витала в воздухе более 30 лет, но проводившиеся исследования не приводили к приемлемому результату, поэтому ЖК мониторы не завоевали репутации устройств, обеспечивающих хорошее качество изображения. Сейчас они становятся популярными - всем нравится их изящный вид, тонкий стан, компактность, экономичность (15-30 ватт), кроме того, считается, что только обеспеченные и серьезные люди могут позволить себе такую роскошь.

Время идет, цены падают, а ЖК мониторы становятся все лучше и лучше. Теперь они обеспечивают качественное контрастное, яркое, отчетливое изображение. Именно по этой причине пользователи переходят с традиционных ЭЛТ-мониторов на жидкокристаллические. Раньше жидкокристаллические технологии были медленнее, они не были настолько эффективными, и их уровень контрастности был низок. Первые матричные технологии, так называемые пассивные матрицы, вполне неплохо работали с текстовой информацией, но при резкой смене картинки на экране оставались так называемые "призраки". Поэтому такого рода устройства не подходили для просмотра видеофильмов и игр. Сегодня на пассивных матрицах работает большинство черно-белых портативных компьютеров, пейджеры и мобильные телефоны. Так как ЖК технология адресует каждый пиксель отдельно, четкость получаемого текста выше в сравнении с ЭЛТ-монитором. Отметим, что на ЭЛТ-мониторах при плохом сведении лучей пиксели, из которых состоит изображение, размываются.

Существует два вида ЖК мониторов: DSTN (dual-scan twisted nematic - кристаллические экраны с двойным сканированием) и TFT (thin film transistor - на тонкопленочных транзисторах), также их называют соответственно пассивными и активными матрицами. Такие мониторы состоят из следующих слоев: поляризующего фильтра, стеклянного слоя, электрода, слоя управления, жидких кристаллов, ещё одного слоя управления, электрода, слоя стекла и поляризующего фильтра.

В первых компьютерах использовались восьмидюймовые (по диагонали) пассивные черно-белые матрицы. С переходом на технологию активных матриц, размер экрана вырос. Практически все современные ЖК мониторы используют панели на тонкопленочных транзисторах, обеспечивающих яркое, четкое изображение значительно большего размера.

Как работает ЖК монитор


Поперечное сечение панели на тонкопленочных транзисторах представляет собой многослойный бутерброд. Крайний слой любой из сторон выполнен из стекла. Между этими слоями расположен тонкопленочный транзистор, панель цветного фильтра, обеспечивающая нужный цвет - красный, синий или зеленый, и слой жидких кристаллов. Вдобавок ко всему существует флуоресцентная подсветка, освещающая экран изнутри.

При нормальных условиях, когда нет электрического заряда, жидкие кристаллы находятся в аморфном состоянии. В этом состоянии жидкие кристаллы пропускают свет. Количеством света, проходящего через жидкие кристаллы, можно управлять с помощью электрических зарядов - при этом изменяется ориентация кристаллов.

Как и в традиционных электроннолучевых трубках, пиксель формируется из трех участков - красного, зеленого и синего. А различные цвета получаются в результате изменения величины соответствующего электрического заряда (что приводит к повороту кристалла и изменению яркости проходящего светового потока).

TFT экран состоит из целой сетки таких пикселей, где работой каждого цветового участка каждого пикселя управляет отдельный транзистор. Именно здесь стоит поговорить о разрешении. Для нормального обеспечения экранного разрешения 1024х768 (режим SVGA) монитор должен располагать именно таким количеством пикселей.

Почему именно ЖК?

Жидкокристаллические мониторы обладают совершенно иным стилем. В традиционных электроннолучевых мониторах формообразующим фактором был кинескоп. Его размер и форму нельзя было изменять. В ЖК мониторах кинескопа нет, поэтому можно производить мониторы любой формы.

Сравните 15-дюймовый ЭЛТ-монитор весом 15 кг с жидкокристаллической панелью глубиной (вместе с подставкой) менее 15 см и весом 5-6 кг. Преимущества таких мониторов понятны. Они не такие громоздкие, не имеют проблем с фокусировкой, а их четкость облегчает работу на высоких разрешениях экрана, пусть даже его размер не так велик. Например, даже 17-дюймовый жидкокристаллический монитор прекрасно показывает в разрешении 1280х1024, тогда как даже для 18-дюймовых ЭЛТ-мониторов это предел. К тому же, в отличие от ЭЛТ-мониторов, большинство ЖК - цифровые. Это означает, что графической карте с цифровым выходом не придется производить цифроаналоговые преобразования, какие она производит в случае с ЭЛТ-монитором. Теоретически, это позволяет более тщательно передавать информацию о цвете и о местоположении пикселя. В то же время, если подключать ЖК монитор к стандартному аналоговому VGA выходу, придется проводить аналого-цифровые преобразования (ведь ЖК-панели - это цифровые устройства). При этом могут возникнуть различные нежелательные артефакты. Теперь, когда приняты соответствующие стандарты и все большее количество карт обеспечивается цифровыми выходами, ситуация значительно упростится.

Преимущества ЖК мониторов

  • ЖК мониторы более экономичные;
  • У них нет электромагнитного излучения в сравнении c ЭЛТ-мониторами;
  • Они не мерцают, как ЭЛТ-мониторы;
  • Они легкие и не такие объемные;
  • У них большая видимая область экрана.
Среди других отличий:

Разрешение: ЭЛТ-мониторы могут работать на нескольких разрешениях в полноэкранном режиме, когда ЖК монитор может работать только с одним разрешением. Меньшие разрешения возможны лишь при использовании части экрана. Так, например, на мониторе с разрешением 1024х768 при работе в разрешении 640х480 будет задействовано лишь 66% экрана.

Измерение диагонали: размер диагонали видимой области ЖК монитора соответствует размеру его реальной диагонали. В ЭЛТ-мониторах реальная диагональ теряет за рамкой монитора более дюйма.

Сведение лучей: в жидкокристаллических мониторах каждый пиксель включается или выключается отдельно, поэтому не возникает никаких проблем со сведением лучей, в отличие от ЭЛТ-мониторов, где требуется безукоризненная работа электронных пушек.

Сигналы: ЭЛТ-мониторы работают на аналоговых сигналах, а ЖК мониторы используют цифровые сигналы.

Отсутствие мерцания: качество изображения на ЖК мониторах выше, а при работе нагрузка на глаза меньше - сказывается ровная плоскость экрана и отсутствие мерцания.

Как выбирать ЖК монитор?

"Внешность обманчива" - это высказывание применимо ко всему, включая и жидкокристаллические мониторы. Большинство неопытных покупателей делают свой выбор под влиянием внешности монитора. При покупке монитора в первую очередь стоит учитывать следующее.

"Мертвые пиксели" - на плоской панели может не работать несколько пикселей. Распознать их нетрудно - они всегда одного цвета. Они возникают в процессе производства и восстановлению не подлежат. Приемлемым считается, когда в мониторе не более трех таких пикселей. В некоторых случаях, такие пиксели могут раздражать - особенно при просмотре фильмов. Поэтому если для вас критично отсутствие мертвых пикселей, перед покупкой конкретного монитора проверьте его.

Угол просмотра - Если вы когда-либо ранее пользовались ноутбуком, вы, вероятнее всего, знаете, что работать за ЖК монитором лучше всего под определенным углом. У некоторых мониторов значение этого угла довольно велико, таким образом вы можете видеть изображение на мониторе даже в тех случаях, когда монитор не находится непосредственно перед вами. Отметим, что некоторые владельцы ноутбуков находят небольшие значения угла полезными - в тех случаях, когда требуется, чтобы ваш сосед не видел, что происходит на экране вашего монитора. Итак, угол в 120 градусов считается неплохим.

Контрастность - сами по себе пиксели не вырабатывают свет, они лишь пропускают свет от подсветки. И темный экран вовсе не означает, что подсветка не работает - просто пиксели блокируют этот свет и не пропускают его сквозь экран. Под контрастностью LCD монитора подразумевается, сколько уровней яркости могут создавать его пикселы. Обычно, контрастность 250:1 считается хорошей.

Яркость - насколько ярким может быть ЖК монитор? По правде сказать, яркость жидкокристаллического дисплея может быть выше яркости электронно-лучевой трубки. Но, как правило, яркость ЖК монитора не превышает 225 кандел на квадратный метр - это сопоставимо с яркостью телевизора.

Размер экрана - как и у ЭЛТ-мониторов, размер ЖК мониторов определяются диагональю. Однако заметим, что у ЖК мониторов нет черной рамочки, какая имеется у ЭЛТ-мониторов. Поэтому экран в 15,1 дюйма на самом деле показывает 15,1 дюйма (обычно это соответствует разрешению 1024х768). ЖК монитор размером 17,1 дюйма будет работать в разрешении 1280х1024.

Как выбирать ЖК монитор?

Существует множество различных производителей ЖК мониторов. Наиболее известны мониторы Viewsonic, Sony, Silicon Graphics, Samsung, Nec, Eizo Nano и Apple. Обычно за такими мониторами сидят крутые ребята. Обратите, ни один современный фильм не обходится без ЖК мониторов - ведь они так привлекательны. Вспомнить, к примеру, последние боевики: Лару Крофт из "Томб Райдера" окружали Sony N50, а в "Рыбе-меч" в компьютерной комнате использовались Silicon Graphics 1600SW. Разве они не выглядят привлекательно?


выглядят хорошо, легко, очень тонкий (всего 1,2 см) - 15"


Толщиной лишь 1,2 см, красивы, дороги, качественная картинка, и вообще, вещь - загляденье - 18"


Viewsonic VP181 - дорогой, имеет входы-выходы для TV, VCD, DBD, кроме того, встроенный колонки - 18";
Apple Cinema Display - отличаются высоким разрешением, имеют большой экран, отличаются дизайном - 22";
Sony M81 - тонкие, но на самом деле выглядят несколько иначе, не так, как на этом рисунке - 18"


SGI 1600SW - отличаются дизайном, превосходными характеристиками, дорогие - 17";
Sony L181 - очень тонкие, очень дорогие, но используют технологию Trinitron - 18";
Eizo Nano - выглядят изящно, дорогие - 18"